IMPORTANT INFORMATION

Leadtimes are longer due to an increase in demand.
Actual leadtimes can be longer than what shows on the product ordering pages.

For more information, click here to visit the Covid-19 Information page.

Earthquake Information - Geological Background

Earthquake Information - Geological Background
An earthquake is the result from the sudden release of stored energy in the Earth's crust that creates seismic waves. At the Earth's surface, earthquakes may manifest themselves by a shaking or displacement of the ground and sometimes cause tsunamis, which may lead to loss of life and destruction of property. An earthquake is caused by tectonic plates getting stuck and putting a strain on the ground. The strain becomes so great that rocks give way by fault planes breaking.

Naturally occurring earthquakes: Most naturally occurring earthquakes are related to the tectonic nature of the Earth. Such earthquakes are called tectonic earthquakes. The Earth's lithosphere is a patchwork of plates in slow but constant motion caused by the heat in the Earth's mantle and planetary core. The heat causes the rock under the earth to become liquid magma on geological timescales, on which the plates are able to move, slowly but surely. Plate boundaries grind past each other, creating frictional stress. When the frictional stress exceeds a critical value, called local strength, a sudden failure occurs. The boundary of tectonic plates along which failure occurs is called the fault plane. When the failure at the fault plane results in a violent displacement of the Earth's crust, the elastic strain energy is released and seismic waves are radiated, thus causing an earthquake. This process of strain, stress, and failure is referred to as the Elastic-rebound theory. It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth and is converted into heat. Therefore, earthquakes lower the Earth's available potential energy, though these losses are negligible.

The majority of tectonic earthquakes originate at depths not exceeding tens of kilometers. In subduction zones, where older and colder oceanic crust descends beneath another tectonic plate, earthquakes may occur at much greater depths (up to seven hundred kilometers). These seismically active areas of subduction are known as Wadati-Benioff zones. Deep focus earthquakes are another phenomenon associated with a subducting slab. These are earthquakes that occur at a depth at which the subducted lithosphere should no longer be brittle, due to the high temperature and pressure. A possible mechanism for the generation of deep focus earthquakes is faulting caused by olivine undergoing a phase transition into a spinel structure.

Earthquakes may also occur in volcanic regions and are caused by the movement of magma in volcanoes. Such quakes can be an early warning of volcanic eruptions.

A recently proposed theory suggests that some earthquakes may occur in a sort of earthquake storm, where one earthquake will trigger a series of earthquakes each triggered by the previous shifts on the fault lines, similar to aftershocks, but occurring years later, and with some of the later earthquakes as damaging as the early ones. Such a pattern was observed in the sequence of about a dozen earthquakes that struck the North Anatolian Fault in Turkey in the 20th Century, the half dozen large earthquakes in New Madrid in 1811-1812, and has been inferred for older anomalous clusters of large earthquakes in the Middle East and in the Mojave Desert.

Human impacts: Earthquakes may result in disease, lack of basic necessities such as food water and shelter, loss of life, higher insurance premiums, general property damage, road and bridge damage, and collapse of buildings or destabilization of the base of buildings which may lead to collapse in future earthquakes.

Effects/impacts of earthquakes: There are many effects of earthquakes including, but not limited to the following:

Shaking and ground rupture: Shaking and ground rupture are the main effects created by earthquakes, principally resulting in more or less severe damage to buildings or other rigid structures. The severity of the local effects depends on the complex combination of the earthquake magnitude, the distance from epicenter, and the local geological and geomorphological conditions, which may amplify or reduce wave propagation. The ground-shaking is measured by ground acceleration.

Specific local geological, geomorphological, and geostructural features can induce high levels of shaking on the ground surface even from low-intensity earthquakes. This effect is called site or local amplification. It is principally due to the transfer of the seismic motion from hard deep soils to soft superficial soils and to effects of seismic energy focalization owing to typical geometrical setting of the deposits.

Landslides and avalanches: Earthquakes can cause landslides and avalanches, which may cause damage in hilly and mountainous areas.

Fires: Following an earthquake, fires can be generated by break of the electrical power or gas lines.

Soil liquefaction: Soil liquefaction occurs when, because of the shaking, water-saturated granular material temporally loses their strength and transforms from a solid to a liquid. Soil liquefaction may cause rigid structures, as buildings or bridges, to tilt or sink into the liquefied deposits.



survival kit for home



survival kit for car



survival kit for office



survival kit for schools and students



emergency survival tools



boating and marine survival supplies